Search results for "Hilbert scheme"

showing 6 items of 6 documents

On GIT quotients of Hilbert and Chow schemes of curves

2011

The aim of this note is to announce some results on the GIT problem for the Hilbert and Chow scheme of curves of degree d and genus g in P^{d-g}, whose full details will appear in a subsequent paper. In particular, we extend the previous results of L. Caporaso up to d>4(2g-2) and we observe that this is sharp. In the range 2(2g-2)<d<7/2(2g-2), we get a complete new description of the GIT quotient. As a corollary, we get a new compactification of the universal Jacobian over the moduli space of pseudo-stable curves.

Pure mathematics14L30General MathematicsCompactified universal JacobianHilbert scheme01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsProjective spaceCompactification (mathematics)0101 mathematicsAlgebraic Geometry (math.AG)QuotientMathematicsDegree (graph theory)010102 general mathematicsChow schemeGIT quotientGITModuli spaceStable curvesHilbert schemeScheme (mathematics)Settore MAT/03 - Geometria010307 mathematical physicsPseudo-stable curveElectronic Research Announcements in Mathematical Sciences
researchProduct

Invariant deformation theory of affine schemes with reductive group action

2015

We develop an invariant deformation theory, in a form accessible to practice, for affine schemes $W$ equipped with an action of a reductive algebraic group $G$. Given the defining equations of a $G$-invariant subscheme $X \subset W$, we device an algorithm to compute the universal deformation of $X$ in terms of generators and relations up to a given order. In many situations, our algorithm even computes an algebraization of the universal deformation. As an application, we determine new families of examples of the invariant Hilbert scheme of Alexeev and Brion, where $G$ is a classical group acting on a classical representation, and describe their singularities.

Classical groupPure mathematicsInvariant Hilbert schemeDeformation theory01 natural sciencesMathematics - Algebraic Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsInvariant (mathematics)Representation Theory (math.RT)Algebraic Geometry (math.AG)MathematicsAlgebra and Number Theory[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010102 general mathematicsReductive group16. Peace & justiceObstruction theoryDeformation theoryHilbert schemeAlgebraic groupMSC: 13A50; 20G05; 14K10; 14L30; 14Q99; 14B12Gravitational singularity010307 mathematical physicsAffine transformation[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]SingularitiesMathematics - Representation Theory
researchProduct

Rolle's Theorem for Polynomials of Degree Four in a Hilbert Space

2002

AbstractIn an infinite-dimensional real Hilbert space, we introduce a class of fourth-degree polynomials which do not satisfy Rolle's Theorem in the unit ball. Extending what happens in the finite-dimensional case, we show that every fourth-degree polynomial defined by a compact operator satisfies Rolle's Theorem.

Hilbert spacesDiscrete mathematicsHilbert manifoldRolle's theorempolynomialsApplied MathematicsHilbert spaceHilbert's basis theoremCompact operator on Hilbert spacesymbols.namesakeVon Neumann's theoremHilbert schemeRolle's TheoremsymbolsBrouwer fixed-point theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Universal formulas for characteristic classes on the Hilbert schemes of points on surfaces

2007

This article can be seen as a sequel to the first author's article ``Chern classes of the tangent bundle on the Hilbert scheme of points on the affine plane'', where he calculates the total Chern class of the Hilbert schemes of points on the affine plane by proving a result on the existence of certain universal formulas expressing characteristic classes on the Hilbert schemes in term of Nakajima's creation operators. The purpose of this work is (at least) two-fold. First of all, we clarify the notion of ``universality'' of certain formulas about the cohomology of the Hilbert schemes by defining a universal algebra of creation operators. This helps us to reformulate and extend a lot of the f…

Hilbert manifoldHilbert's basis theoremHilbert matrix01 natural sciencesMathematics - Algebraic Geometrysymbols.namesakeCharacteristic classesPrimary 14C05Secondary 14C170103 physical sciencesFOS: Mathematics[MATH]Mathematics [math]0101 mathematicsAlgebraic Geometry (math.AG)ComputingMilieux_MISCELLANEOUSMathematicsHilbert–Poincaré seriesHilbert's second problemHilbert series and Hilbert polynomialAlgebra and Number Theory010102 general mathematicsHilbert's fourteenth problemUniversal formulasPrimary 14C05; Secondary 14C17Hilbert schemes of pointsAlgebraHilbert schemesymbols[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physics
researchProduct

The cup product of Hilbert schemes for K3 surfaces

2003

To any graded Frobenius algebra A we associate a sequence of graded Frobenius algebras A [n] so that there is canonical isomorphism of rings (H *(X;ℚ)[2]) [n] ≅H *(X [n] ;ℚ)[2n] for the Hilbert scheme X [n] of generalised n-tuples of any smooth projective surface X with numerically trivial canonical bundle.

Discrete mathematicsSurface (mathematics)Hilbert series and Hilbert polynomialSequencePure mathematicsMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematics01 natural sciencesCanonical bundlesymbols.namesakeHilbert schemeCup product0103 physical sciencesFrobenius algebrasymbols[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physicsIsomorphism0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsInventiones Mathematicae
researchProduct

Deformations of Calabi-Yau manifolds in Fano toric varieties

2020

In this article, we investigate deformations of a Calabi-Yau manifold $Z$ in a toric variety $F$, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor $H^F_Z$ of infinitesimal deformations of $Z$ in $F$ to the functor of infinitesimal deformations of $Z$ is smooth. This implies the smoothness of $H^F_Z $ at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.

Pure mathematicsGeneral MathematicsInfinitesimalFano plane01 natural sciencesMathematics - Algebraic GeometryMorphismMathematics::Algebraic GeometryMathematics::Category TheoryFOS: MathematicsCalabi–Yau manifold0101 mathematicsMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)ComputingMethodologies_COMPUTERGRAPHICSMathematicsFunctorComputer Science::Information Retrieval010102 general mathematicsToric varietyFano toric varieties · Calabi-Yau manifolds · Deformations of subvarietiesManifold010101 applied mathematicsHilbert scheme14J32 14J45 32G10Settore MAT/03 - GeometriaMathematics::Differential Geometry
researchProduct